Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa.

Identifieur interne : 002326 ( Main/Exploration ); précédent : 002325; suivant : 002327

ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa.

Auteurs : Sergiu Netotea ; David Sundell ; Nathaniel R. Street ; Torgeir R. Hvidsten [Suède]

Source :

RBID : pubmed:24498971

Descripteurs français

English descriptors

Abstract

BACKGROUND

Divergence in gene regulation has emerged as a key mechanism underlying species differentiation. Comparative analysis of co-expression networks across species can reveal conservation and divergence in the regulation of genes.

RESULTS

We inferred co-expression networks of A. thaliana, Populus spp. and O. sativa using state-of-the-art methods based on mutual information and context likelihood of relatedness, and conducted a comprehensive comparison of these networks across a range of co-expression thresholds. In addition to quantifying gene-gene link and network neighbourhood conservation, we also applied recent advancements in network analysis to do cross-species comparisons of network properties such as scale free characteristics and gene centrality as well as network motifs. We found that in all species the networks emerged as scale free only above a certain co-expression threshold, and that the high-centrality genes upholding this organization tended to be conserved. Network motifs, in particular the feed-forward loop, were found to be significantly enriched in specific functional subnetworks but where much less conserved across species than gene centrality. Although individual gene-gene co-expression had massively diverged, up to ~80% of the genes still had a significantly conserved network neighbourhood. For genes with multiple predicted orthologs, about half had one ortholog with conserved regulation and another ortholog with diverged or non-conserved regulation. Furthermore, the most sequence similar ortholog was not the one with the most conserved gene regulation in over half of the cases.

CONCLUSIONS

We have provided a comprehensive analysis of gene regulation evolution in plants and built a web tool for Comparative analysis of Plant co-Expression networks (ComPlEx, http://complex.plantgenie.org/). The tool can be particularly useful for identifying the ortholog with the most conserved regulation among several sequence-similar alternatives and can thus be of practical importance in e.g. finding candidate genes for perturbation experiments.


DOI: 10.1186/1471-2164-15-106
PubMed: 24498971
PubMed Central: PMC3925997


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa.</title>
<author>
<name sortKey="Netotea, Sergiu" sort="Netotea, Sergiu" uniqKey="Netotea S" first="Sergiu" last="Netotea">Sergiu Netotea</name>
</author>
<author>
<name sortKey="Sundell, David" sort="Sundell, David" uniqKey="Sundell D" first="David" last="Sundell">David Sundell</name>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
</author>
<author>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, Sweden. torgeir.r.hvidsten@nmbu.no.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24498971</idno>
<idno type="pmid">24498971</idno>
<idno type="doi">10.1186/1471-2164-15-106</idno>
<idno type="pmc">PMC3925997</idno>
<idno type="wicri:Area/Main/Corpus">002310</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002310</idno>
<idno type="wicri:Area/Main/Curation">002310</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002310</idno>
<idno type="wicri:Area/Main/Exploration">002310</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa.</title>
<author>
<name sortKey="Netotea, Sergiu" sort="Netotea, Sergiu" uniqKey="Netotea S" first="Sergiu" last="Netotea">Sergiu Netotea</name>
</author>
<author>
<name sortKey="Sundell, David" sort="Sundell, David" uniqKey="Sundell D" first="David" last="Sundell">David Sundell</name>
</author>
<author>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
</author>
<author>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, Sweden. torgeir.r.hvidsten@nmbu.no.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Internet (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Populus (genetics)</term>
<term>User-Computer Interface (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Interface utilisateur (MeSH)</term>
<term>Internet (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Populus (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Base Sequence</term>
<term>Conserved Sequence</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Regulatory Networks</term>
<term>Genes, Plant</term>
<term>Internet</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Gènes de plante</term>
<term>Interface utilisateur</term>
<term>Internet</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réseaux de régulation génique</term>
<term>Séquence conservée</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Divergence in gene regulation has emerged as a key mechanism underlying species differentiation. Comparative analysis of co-expression networks across species can reveal conservation and divergence in the regulation of genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We inferred co-expression networks of A. thaliana, Populus spp. and O. sativa using state-of-the-art methods based on mutual information and context likelihood of relatedness, and conducted a comprehensive comparison of these networks across a range of co-expression thresholds. In addition to quantifying gene-gene link and network neighbourhood conservation, we also applied recent advancements in network analysis to do cross-species comparisons of network properties such as scale free characteristics and gene centrality as well as network motifs. We found that in all species the networks emerged as scale free only above a certain co-expression threshold, and that the high-centrality genes upholding this organization tended to be conserved. Network motifs, in particular the feed-forward loop, were found to be significantly enriched in specific functional subnetworks but where much less conserved across species than gene centrality. Although individual gene-gene co-expression had massively diverged, up to ~80% of the genes still had a significantly conserved network neighbourhood. For genes with multiple predicted orthologs, about half had one ortholog with conserved regulation and another ortholog with diverged or non-conserved regulation. Furthermore, the most sequence similar ortholog was not the one with the most conserved gene regulation in over half of the cases.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>We have provided a comprehensive analysis of gene regulation evolution in plants and built a web tool for Comparative analysis of Plant co-Expression networks (ComPlEx, http://complex.plantgenie.org/). The tool can be particularly useful for identifying the ortholog with the most conserved regulation among several sequence-similar alternatives and can thus be of practical importance in e.g. finding candidate genes for perturbation experiments.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24498971</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa.</ArticleTitle>
<Pagination>
<MedlinePgn>106</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-15-106</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Divergence in gene regulation has emerged as a key mechanism underlying species differentiation. Comparative analysis of co-expression networks across species can reveal conservation and divergence in the regulation of genes.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We inferred co-expression networks of A. thaliana, Populus spp. and O. sativa using state-of-the-art methods based on mutual information and context likelihood of relatedness, and conducted a comprehensive comparison of these networks across a range of co-expression thresholds. In addition to quantifying gene-gene link and network neighbourhood conservation, we also applied recent advancements in network analysis to do cross-species comparisons of network properties such as scale free characteristics and gene centrality as well as network motifs. We found that in all species the networks emerged as scale free only above a certain co-expression threshold, and that the high-centrality genes upholding this organization tended to be conserved. Network motifs, in particular the feed-forward loop, were found to be significantly enriched in specific functional subnetworks but where much less conserved across species than gene centrality. Although individual gene-gene co-expression had massively diverged, up to ~80% of the genes still had a significantly conserved network neighbourhood. For genes with multiple predicted orthologs, about half had one ortholog with conserved regulation and another ortholog with diverged or non-conserved regulation. Furthermore, the most sequence similar ortholog was not the one with the most conserved gene regulation in over half of the cases.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">We have provided a comprehensive analysis of gene regulation evolution in plants and built a web tool for Comparative analysis of Plant co-Expression networks (ComPlEx, http://complex.plantgenie.org/). The tool can be particularly useful for identifying the ortholog with the most conserved regulation among several sequence-similar alternatives and can thus be of practical importance in e.g. finding candidate genes for perturbation experiments.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Netotea</LastName>
<ForeName>Sergiu</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sundell</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Street</LastName>
<ForeName>Nathaniel R</ForeName>
<Initials>NR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hvidsten</LastName>
<ForeName>Torgeir R</ForeName>
<Initials>TR</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, Sweden. torgeir.r.hvidsten@nmbu.no.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="Y">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020407" MajorTopicYN="N">Internet</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014584" MajorTopicYN="N">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24498971</ArticleId>
<ArticleId IdType="pii">1471-2164-15-106</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-15-106</ArticleId>
<ArticleId IdType="pmc">PMC3925997</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2009 Jun 15;25(12):1476-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19357096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013;13:83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23688397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22127870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Oct;11(10):723-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20820184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Mar;23(3):530-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16280543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13057-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 15;286(5439):509-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Mar 10;471(7337):216-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21390129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Feb;5(2):101-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14735121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 20;270(5235):467-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18940857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Oct;35(10):1787-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22489681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 31;5:118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15339346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):895-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2007;3:78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17299415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1244-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21606319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Sep;71(6):1038-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22607031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D1114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Jul 01;2:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1974-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D1016-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21081562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 May;31(1):64-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Jan;5(1):e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17214507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jun 15;25(12):i253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19477996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(10):R80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15461798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Feb 12;20(3):307-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14960456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011;11:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2010 Sep 6;7(50):1341-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20236959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 May 1;21(9):1010-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17473168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 2):026126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12636767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22719866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22849396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):408-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18694447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(3):e9803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20339551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10967-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16835301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Jul;13(7):505-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22705669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2013 Mar 22;280(1755):20122863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23363632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2012;6:144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23171476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22272232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(4):R53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17428329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Apr;39(7):e41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1316-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21571672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e50411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23226279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):1763-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 May 1;28(9):1239-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(9):R96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19754933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11497662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011 Aug;7(8):e1002173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21901087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2011;5 Suppl 3:S10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22784616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011;12(12):235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22204388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011;7(1):e1001050</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21253555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16174729</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Netotea, Sergiu" sort="Netotea, Sergiu" uniqKey="Netotea S" first="Sergiu" last="Netotea">Sergiu Netotea</name>
<name sortKey="Street, Nathaniel R" sort="Street, Nathaniel R" uniqKey="Street N" first="Nathaniel R" last="Street">Nathaniel R. Street</name>
<name sortKey="Sundell, David" sort="Sundell, David" uniqKey="Sundell D" first="David" last="Sundell">David Sundell</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Hvidsten, Torgeir R" sort="Hvidsten, Torgeir R" uniqKey="Hvidsten T" first="Torgeir R" last="Hvidsten">Torgeir R. Hvidsten</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002326 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002326 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24498971
   |texte=   ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24498971" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020